
Optimizing for Blue Gene/Q

Hal Finkel
hfinkel@anl.gov
2015-05-19

mailto:hfinkel@anl.gov

Optimizing for Blue Gene/Q

✔ Relevant information on the BG/Q

✔ How you can optimize your code for the BG/Q

✔ Q&A

You want to know how
to make me compute quickly...

Optimizing for Blue Gene/Q

This is a BG/Q node

This is not

Optimizing for Blue Gene/Q

This is a BG/Q node

Mira has 49152 of these functioning as compute nodes!

What programs do...

✔ Read data from memory

✔ Compute using that data

✔ Write results back to memory

✔ Communicate with other nodes and the outside world

How fast can you go...

The speed at which you can compute is bounded by:

 (the clock rate of the cores) x (the amount of parallelism you can exploit)

This is fixed:
1.66 GHz

Your hard work goes here...

Types of parallelism

✔ Parallelism across nodes (using MPI, etc.)

✔ Parallelism across sockets within a node [Not applicable to the BG/Q]

✔ Parallelism across cores within each socket

✔ Parallelism across pipelines within each core (i.e. instruction-level parallelism)

✔ Parallelism across vector lanes within each pipeline (i.e. SIMD)

✔ Using instructions that perform multiple operations simultaneously (e.g. FMA)
Hardware threads

tie in here too!

There is only one socket

Image source: https://computing.llnl.gov/tutorials/linux_clusters/ Not a BG/Q node

Commodity HPC node with four sockets

Has nonuniform memory access (NUMA):
each core has DRAM to which it is closer

(running multiple MPI ranks per node, one per socket, is probably best)

There is only one socket

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

A BG/Q node

A BG/Q node has only one “socket” with one CPU

All memory is equally close:
No NUMA

(running one MPI rank per node works well)

A BG/Q Node has:
✔ 1 PowerPC A2Q CPU
✔ 16 GB DDR3 DRAM

There are 16 cores per node

Commodity HPC CPUs typically
have only 4 - 12 cores

(and the operating system does not
have a dedicated core)

Not a BG/Q core

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

There are 16 cores per node

Image source: https://computing.llnl.gov/tutorials/linux_clusters/

Each BG/Q CPU has 16 cores you can use

The cores are connected by a
cross-bar interconnect

with an aggregate read bandwidth
of 409.6 GB/s

(write bandwidth is half that)

CNK, the lightweight operating system, runs on the 17th core!

There are two pipelines per core

Not a BG/Q core

PowerPC A2 Core:
In commodity HPC cores, instructions are

dispatched to many pipelines after
dynamic rearrangement (out of order).

Probably executes x86-64 (Intel/AMD)
instructions (including some set

of vector extensions).

Multiple choices for
some instruction types.

There are two pipelines per core
PowerPC A2 Core:

Only one choice for
any instruction:

no ILP vs. vectorization tradeoffs!

Executes PowerPC instructions
(complying with the
POWER ISA v2.06)

plus QPX vector instructions

On the BG/Q, instruction dispatch feeds
only two pipelines in order

There are four hardware threads per core

Instructions from the four hardware threads
are dispatched round-robin

The four threads share essentially
all resources (except the register file)

The two pipelines can simultaneously start
two instructions, but they must come from

two different threads

You must have at least two threads (or processes)
per core to efficiently use the BG/Q!

Vectorization: The Quad-Processing eXtension (QPX)

RF

MAD0 MAD3MAD2MAD1

RFRFRF

Permute

Load

A2

256

64

32 QPX registers
(and 32 general purpose

registers) per thread

Arbitrary permutations
complete in

only two cycles.

The first vector element in each
vector register is the corresponding

scalar FP register.

FP arithmetic completes in six cycles
(and is fully pipelined).

Loads/stores execute in the
XU pipeline (same as all other

load/stores).

Vectorization: The Quad-Processing eXtension (QPX)

RF

MAD0 MAD3MAD2MAD1

RFRFRF

Permute

Load

A2

256

64

On commodity HPC
hardware, integer

operations can also be
vectorized, but not on

the BG/Q.

✔ On the BG/Q, only QPX vector instructions are supported!

✔ Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

✔ The only advantage of single precision over double precision is decreased memory bandwidth/footprint.

Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

qvfmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA1)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA3)×(QRC3)] + (QRB3)

qvfmsub:
QRT0 ← [(QRA0)×(QRC0)] - (QRB0)
QRT1 ← [(QRA1)×(QRC1)] - (QRB1)
QRT2 ← [(QRA2)×(QRC2)] - (QRB2)
QRT3 ← [(QRA3)×(QRC3)] - (QRB3)

qvfxxnpmadd:
 QRT0 ← - ([(QRA1)×(QRC1)] - (QRB0))
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)

 QRT2 ← - ([(QRA3)×(QRC3)] - (QRB2))
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

qvfxmadd:
QRT0 ← [(QRA0)×(QRC0)] + (QRB0)
QRT1 ← [(QRA0)×(QRC1)] + (QRB1)
QRT2 ← [(QRA2)×(QRC2)] + (QRB2)
QRT3 ← [(QRA2)×(QRC3)] + (QRB3)

Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.

Putting it all together...

You can only achieve the peak FLOP
rate using FMAs

(usually true on commodity hardware too)

You must vectorize to achieve
The peak FLOP rate

(on future machines, this factor
will be even larger)

Note: this is an order of magnitude
(on future machines, it will be nearly

two orders of magnitude)

Remember you must use at least two
hardware threads (or processes)

or else you won't be able to
saturate the floating-point pipeline

in practice

Memory

DDR3 DRAM
(2 controllers)

Commodity HPC cores
often also have an
L3 cache; we don't.

However, they have an L2
cache that is only
hundreds of KB.

L2 cache
(16 slices)

16 GB in total

L1 cache and L1P internal buffer
(per core)

The L1 cache and Prefetcher

L1 Data

L1 Inst
Core L1P

Cross Bar Switch

✔ Each core has its own L1 cache and L1 Prefetcher (L1P)

✔ L1 Cache:

✔ Data: 16 KB, 8-way set associative, 64-byte cache lines, 6-cycle latency

✔ Instruction: 16 KB, 4-way set associative, 3-cycle latency

✔ L1 Pefetcher (L1P):

✔ 32 buffer entries, 128 bytes each, 24 cycle latency

✔ Buffer is write back

✔ Operates in list or stream mode (stream mode is the default)

✔ By default, tracks 10 streams x 3 128-byte cache lines deep

Hardware prefetching will never
insert data directly into

the L1 cache (data is stored
in the L1P's buffer instead).

Only explicit software
prefetching can do that.
The latency of reading

from the L1P is still significant.

The L2 cache and DRAM

L2 slice 0

DRAM 0

L2 slice 1

L2 slice 2

L2 slice 3

L2 slice 4

L2 slice 5

L2 slice 6

L2 slice 7

L2 slice 8

L2 slice 9

L2 slice 10

L2 slice 11

L2 slice 12

L2 slice 13

L2 slice 14

L2 slice 15

DRAM 1

Cr
os

sb
ar

✔ L2 Cache:

✔ Shared by all cores, divided into 16 slices

✔ 32 MB total, 2 MB per slice

✔ 16-way set associative, 128-byte lines, write-back, 82-cycle latency

✔ Prefetches from DRAM based on L1P requests

✔ Supports direct atomic operations

✔ Supports multiversioning (for transactional memory)

✔ Clocked at 800 MHz (half of the CPU rate)

✔ Read: 32 bytes/cycle, Write: 16 bytes/cycle

✔ DRAM:

✔ Two on-chip memory controllers, each connected to 8 L2 slices

✔ Each controller drives a 16-byte DDR-3 channel at 1.33 Gb/s

✔ The peak bandwidth is 42.67 GB/s (excluding ECC)

✔ The latency is > 350 cycles

Twice the L1 line size

For high-performance
locks and non-blocking

data structures!

Odds and Ends

✔ The A2 core uses in-order dispatch, with one exception: There is an 8-entry load miss queue (LMQ) that

holds loads and prefetches that miss the L1 cache, shared by all threads. Upon an L1 cache miss, the

issuing thread does not actually stall until a use of the load is encountered.

✔ Try not to request the same L1 cache line more than once (especially relevant when using software

prefetching); the second request will stall the thread until the first request is satisfied.

✔ The L2 cache is write-through (so writing to a cache line knocks it out of cache), so avoid writing to memory

from which you soon expect to read. Unlike commodity hardware, which uses write-back caches, making

write locality important, write locality is essentially irrelevant on the BG/Q.

✔ For a mispredicted branch, there is a minimum penalty of 13 cycles.

✔ If you need to compute 1/x (and don't need the exact IEEE answer) or 1/sqrt(x), QPX provides reciprocal

estimate and reciprocal sqrt estimate functions. Combined with a Newton iteration or two, these give nearly-

exact answers and are much less expensive than alternative methods.

✔ There is a timebase register on the A2 core which provides exact cycle counts. If you're trying to time

something, use it!

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];
}

}

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
}

Split the loop

We use restrict here to tell the
compiler that the arrays are

disjoint in memory.

Each statement requires 5 L1P streams,
but we have only 10 per core shared

among all threads.

We want at
least 2 threads

per core.

We could also change the data structures
being used so that we have arrays of structures

(although that might inhibit vectorization).

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
}

We did a bit too much splitting here
(starting each of these parallel regions

can be expensive).

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
 {
#pragma omp for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp for

for (i = 0; i < n; ++i) {
 m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i];

}
 }
}

(don't actually split the parallel region)

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
 {
#pragma omp for

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...
}

The RHS expression is two
dependent FMAs requiring

at least 3 QPX registers
(5 registers if we “preload” all of the
input values). The first FMA has a

6-cycle latency, and if we
run two threads/core, we have

an effective latency
of 3 cycles/thread to hide.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
 {
#pragma omp for
#pragma unroll(3)

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...

The compiler should do this
automatically, but in case it doesn't...

Unroll (interleaved) by a factor of 3.
This will require up to
3*5 == 15 QPX registers,
but we have 32 of them.

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
 {
#pragma omp for
#pragma unroll(3)

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...

These loads are not explicitly
prefetched, so they'll be

coming from the L1P buffer,
not the L1 cache. We'll have

~24 cycles of latency,
~12 cycles/thread, to hide.

But, the compiler will probably “preload” the data for each iteration during
the preceding iteration in order to hide this latency. If it does not, then

you can perform this transformation manually, unroll more, etc.

Or you can insert software prefetch instructions using:
-qprefetch (a command-line flag)

__dcbt (an intrinsic function)
(these are for IBM's compiler; other compilers have different options)

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
 {
#pragma omp for
#pragma unroll(3)

for (i = 0; i < n; ++i) {
a[i] = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
 ...

But, the L2 can deliver only 32 bytes every two cycles,
so for the L2 to keep up, you want to do at least 2 QPX operations

for every loaded value. That would be 10 operations here, but we have only
2 FMAs + 5 loads + 1 store == 8 operations:
Only a higher-level change introducing more

data reuse can solve this problem!

Compiling

When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

✔ +mpiwrapper-xl.legacy

✔ +mpiwrapper-xl

✔ +mpiwrapper-bgclang.legacy

✔ +mpiwrapper-bgclang

✔ +mpiwrapper-gcc.legacy

✔ +mpiwrapper-gcc

(generally best performance)

(generally worst performance)

The “legacy” MPI gives the best
performance unless you're using

MPI_THREAD_MULTIPLE

bgclang has better C++ support than
xl and gcc, but has no Fortran support (yet)

Compiling

Basic optimization flags...

✔ -O3 – Generally aggressive optimizations (try this first: it is typically the best tested of all compiler

optimization levels)

✔ -g – Always include debugging symbols (really, always! - when your run crashes at scale after

running for hours, you want the core file to be useful)

✔ -qsmp=omp (xl) -fopenmp (bgclang and gcc) – Enable OpenMP (the pragmas will be ignored

without this)

✔ -qnostrict (xl) -ffast-math (bgclang and gcc) – Enable “fast” math optimizations (most people don't

need strict IEEE floating-point semantics). xl enables this by default at -O3 and above and you

need to pass -qstrict to turn it off.

If you don't use -O<n> to turn on some optimizations,
most of the previous material is irrelevant!

ESSL

IBM provides ESSL: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). For
FFTs, there is an optional FFTW-compatible interface.

✔ ESSL is installed in /soft/libraries/essl/current

✔ You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)

ESSL is on IBM PowerPC systems
what MKL is on Intel systems.

Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

✔ Memory

✔ Sending data between ranks on the same node often involves “unnecessary” copying

✔ Similarly, your application may need to manage “unnecessary” ghost regions

✔ MPI (and underlying components) have data structures that grow linearly (at best) with the total

number of ranks

✔ And Memory

✔ When threads can work together they can share resources instead of competing (cache, memory

bandwidth, etc.).

✔ Each process only gets 16GB / (ranks per node) memory

✔ And parallelism

✔ You'll likely see the best overall results from the scheme that exposes the most parallelism

Our network is fast...

✔ Each A/B/C/D/E link bandwidth: 4 GB/s

✔ Bisection bandwidth (32 racks): 13.1 TB/s

✔ HW latency

✔ Best: 80 ns (nearest neighbor)

✔ Worst: 3 µs (96-rack 20 PF system, 31 hops)

✔ MPI latency (zero-length, nearest-neighbor): 2.2 µs

MPI does add overhead
which is generally minimal.

If you're sensitive to it, you can
use PAMI (or the SPI interface) directly

And finally, be kind to the file system...

✔ Use MPI I/O (there'll be a talk on this later), use collective I/O if the amounts being written are small

✔ Give each rank its own place within the file to store its data (avoid lock contention)

✔ Make sure you can validate your data (use CRCs, etc.), and then actually validate it when you read it

 (We've open-sourced a library for computing CRCs: http://trac.alcf.anl.gov/projects/hpcrc64/)

And use load + broadcast instead of reading the same thing from every rank...

✔ Static linking is the default for all BG/Q compilers... loading shared libraries from tens of thousands of

ranks may not be fast

✔ The same is true for programs using embedded scripting languages... loading lots of small script files

from tens of thousands of ranks is even worse

You probably want to design your files to be write optimized, not read optimized! Why?
You generally write more checkpoints than you read (and time reading not at scale is “free”).

And writing is slower than reading.

Some final advice...

Don't guess! Profile! (We'll have several talks about how to do that.) Your performance bottlenecks on the
BG/Q might be very different from those on other systems.

And don't be afraid to ask questions... ? Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 12
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

